In Vivo B_1^+ Inhomogeneity Mitigation at 7 Tesla using Sparsity-Enforced Spatially-Tailored Slice-Selective Excitation Pulses

A. C. ZELINSKI, K. SETSOMPOP, V. A. ALAGAPPAN, V. K. GOYAL, L. L. WALD, and E. ADALSTEINSSON

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States; 2A. A. Martinez Center for Biomedical Imaging, Charleston, MA, United States; 3Department of Radiology, Harvard Medical School, Longwood, MA, United States; 4Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, United States.

INTRODUCTION. We design & demonstrate a 7-ms slice-selective pulse that mitigates B_1^+ inhomogeneity in the human brain at 7T without the use of a parallel transmission system. At high field, severe RF inhomogeneity due to wavelength interference & attenuation causes standard slice-selective pulses (SSSPs) to produce non-uniform flip angles across the field of excitation (FOX), leading to contrast & SNR non-uniformity. One way to mitigate B_1^+ inhomogeneity is to use spoke-based RF pulses; these are comprised of weighted sinc-like segments in k placed at different locations in (k_x, k_z) that play along an echo-volumetric trajectory [1,2]. In the small-tip-angle regime [3], the sinc segments excite a slice in z, while the (k_x, k_z) weights tailor the in-plane excitation into the pointwise-inverse of the inhomogeneity. The work here extends our earlier effort [4] to in vivo trials & makes use of recent techniques: a magnetization reset pulse to permit fast (TR<51s) acquisition of multiple images [5], the fitting of these images to an intensity equation to estimate B_1^+, & a novel sparsity-enforced spoke placement to find a small set of spoke locations & weights [6].

THEORY & METHODS. Signal intensity equations. Image intensity I_V at location r due to an SSSP with peak voltage V is:

$$I_V(r) = \frac{\gamma v B_{1+}(r) \sin(\alpha_o(r)) [1-E_r(r,TR)][1-E_r(r,TR) \cos(\alpha_o(r))]^2}{(1-E_r(r,TR) \cos(\alpha_o(r)))^2} \quad (Eq.1),$$

where c is a constant, ρ proton density, B_1 the receive profile, $E_r(r,TR) = \exp(-TR/T_1(r))$, and $\alpha_o(r) = \gamma v r B_1(r)$, where T_1 is the SSSP’s duration & B_1 is in Tesla/volt. Let $R(r) = \rho(r) B_1(r)$. With a reset pulse [5],

$$I(r) = c R(r) [1-E_r(r,TR) \cos(\alpha_o(r))] \quad (Eq.2),$$

i.e., the T_1-denominator is removed (even if TR<T_1). Finally, if α_o is small and a reset pulse is not used, $\cos(\alpha_o) \approx 1$, $\sin(\alpha_o) \approx \alpha_o$, and thus $I(r) = c R(r) \cos(\alpha_o) \approx \alpha_o$.

Profile estimation. To estimate $B_1^+(r)$, we collect N images with increasing V using an SSSP & reset pulse [5]. Then $\forall r \in$ FOV, we fit the N values to Eq.2. To estimate $R(r)$, we collect a low-flip-angle image, $L_m(r)$, without a reset pulse. Eq.3 now holds, and $L_m(r) / B_1^+(r)$ yields $R(r)$ within a constant.

Sparsity-Enforced Spoke Placement (SESP) & pulse design. To minimize pulse duration, only a few spokes may be used; each must be placed & weighted such that the excitation resembles $B_1^+(r)$', so that the overall magnetization $m(r)$ is uniform. One may use SESP [4,6] to determine good spoke coordinates: First, discretize space at locations r_i, $i = 1...N$. Next, define a set of candidate spokes in 2-D k-space, k_j, $j = 1...N_k$, with weights g_j. Let $m \in \mathbb{C}^N$ be a vector of $m(r)$ samples, $g \in \mathbb{C}^{N_x}$ a vector of g_j, D a diag. matrix of $B_1^+(r_j)$ samples, and $A \in \mathbb{C}^{N_x,N}$ where $A_{m,g} = \exp(j \pi r_m k_j)$; then, $m = D A g$. Next, define a target magnetization, $d(r)$, sample it, and form $d \in \mathbb{C}^N$. Finally, solve $\min_{g} \|d - D A g\|_2^2 + \lambda \|A g\|_1$ (for fixed λ); this yields a sparse g, one with few large weights, revealing a small set of T_1 locations to be traversed by the gradients.

The pulse is designed by fixing spoke shape in k_x, truncating all but T of A’s columns, & retuning the weights by least-squares fitting $d = D A_{m,g} \|_{m,g}$. Post-mitigation flip angle estimation & quality metrics. B_1^+ mitigation is quantified by playing the pulse and analyzing the resulting flip angle map, $\alpha_m(r)$. This is achieved by obtaining a low-flip mitigation image, $L_m(r) \propto R(r) \alpha_m(r)$ (per Eq.3). Since $R(r)$ is known, $L_m(r) / R(r)$ gives $\alpha_m(r)$ within a multiplicative constant. The uniformity of $\alpha_m(r)$ is quantified by computing its in-FOX normalized standard deviation, σ, and worst-case maximum variation, MV (maximum in-FOX value divided by minimum in-FOX value); these values are then compared to those of the initial $\alpha_o(r)$.

RESULTS. Human studies used a 7T scanner, body gradients, and a quadrature birdcage coil in accordance with the institution’s HRC. Ten images were collected using SSSPs ($V = 20V, 60V, ... 380V; TR = 1s$) followed by resets. Data was fitted to obtain $\alpha_o(r)$ and $B_1^+(r)$ (Fig. 1: C); each is highly non-uniform with $(\sigma, MV) = (0.15, 2.24)$. An $R(r)$ estimate was obtained from a low-flip SSSP image without reset pulse (Fig. 1: A: B). B_1^+ was fed to SESP, and with $\lambda = 0.35$, 19 spoke locations were determined (Fig. 2). After fixing spokes to be Hanning-windowed slices (TBW=4), these locations & weights yielded the 7-ms pulse shown (Fig. 3). This pulse was simulated (Fig. 1: D) to verify that it yielded approximately $B_1^+(r)$'s.

The pulse was applied in vivo, and a low-flip image obtained (Fig. 1: E); slice selection worked properly (Fig. 1: F). This image was divided by $R(r)$ to yield $\alpha_m(r)$ (Fig. 1: G). Qualitatively, $\alpha_m(r)$ is significantly more uniform than $\alpha_o(r)$ (compare the 1-D profiles). Quantitatively, σ and worst-case MV have been reduced by factors of 3 and 1.7, respectively, a major flip angle uniformity improvement relative to $\alpha_o(r)$.

CONCLUSION. In vivo B_1^+ inhomogeneity present in the human brain at 7T was mitigated using a 7-ms slice-selective SESP-designed pulse. Commercially-available head-only gradients with amplitude & slew rates of 35 mT/m and 600 T/m/s would allow the use of a 19-spoke, 10-mm excitation pulse that performs B_1^+ mitigation in only 5.25 ms.
